Abstract
The material foundation of sustainable agricultural development is cultivated land resources, and their sustainable use is critical to fostering agricultural sustainability and guaranteeing national food security. In this paper, the multifunctional evaluation framework of the cultivated land system based on the “GESEL” model at the grid scale (5 km × 5 km) is constructed to explore the spatiotemporal evolution characteristics of a multifunctional cultivated land system in two lake plains and the trade-off and synergy between the functions. The five functions are all unstable in time scales, and their spatial distribution characteristics are also different. The trade-off and synergy between the multiple functions of the cultivated land system in the two lake plains from 2000 to 2019 showed significant spatial heterogeneity. Most of the functions were mainly collaborative, and a few were trade-offs. The two lake plains can be divided into four multi-functional cultivated land zones: a grain production leading zone, a distinctive agricultural planting zone, a high-efficiency agricultural development zone, and an ecological agricultural construction zone. This research puts forward some countermeasures and suggestions to promote the sustainable utilization of cultivated land resources.
Funder
the Hunan Provincial Department of Education, China
the National Natural Science Foundation of China
the Open Foundation of Regional Development and Environmental Response, Key Laboratory of Hubei Province
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献