Evolution Modes, Types, and Social-Ecological Drivers of Ecologically Critical Areas in the Sichuan–Yunnan Ecological Barrier in the Last 15 Years

Author:

Shi Xinyu,Zhao Xiaoqing,Pu JunweiORCID,Huang Pei,Gu Zexian,Chen Yanjun

Abstract

The ecological barrier is a complex ecosystem that couples the human–nature relationship, and the ecologically critical area is an irreplaceable area with a special value in the ecosystem. Therefore, protecting the ecologically critical area is vital for maintaining and improving regional ecological security. Limited research has been conducted on the evolution of ecologically critical areas, and none of the studies have considered the spatiotemporal heterogeneity of the driving factors for different evolution modes and types. Therefore, this research adopts the ecologically critical index, landscape expansion index, and the random forest model to analyze the pattern, driving factors, and its spatial-temporal heterogeneity to the evolution modes and specific types of ecologically critical areas in the Sichuan–Yunnan ecological barrier area in the last 15 years. The results showed that: (1) the ecologically critical areas in the Sichuan–Yunnan ecological barrier have changed dramatically, with the area reduction being 61.06%. Additionally, the spatial distribution characteristics of the ecologically critical area from north to south include planar, point, and linear forms. (2) The evolution trend of the ecologically critical area is ‘degradation–expansion–degradation’. Spread is the predominant type of expansion mode, whereas atrophy is the predominant type of degradation mode, indicating that the evolution mainly occurs at the edge of the original ecologically critical areas. (3) In general, precipitation, area of forest, area of cropland, and GDP have contributed significantly to the evolution of ecologically critical areas. However, the same driving factor has different effects on the expansion and degradation of these areas. Expansion is driven by multiple factors at the same time but is mainly related to human activities and land use change, whereas for degradation, climate and policy are the main driving factors. The present research aimed to quantitatively identify the evolution modes and specific types of ecologically critical areas and explore the spatiotemporal heterogeneity of driving factors. The results can help decision-makers in formulating ecological protection policies according to local conditions and in maintaining and enhancing the regional ecological functions, thereby promoting the sustainable development of society-economy-ecology.

Funder

National Natural Science Foundation of China

Joint Fund of Yunnan Provincial Science and Technology Department and Yunnan University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference52 articles.

1. Plant phenology and global climate change: Current progresses and challenges

2. Draft of major function oriented zoning of China;Fan;Acta Geogr. Sin.,2015

3. National Barrier Zone Ecosystem Assessment;Fu,2016

4. An approach on constructing ecological defense of the upper reaches of the Yangtze river basin;Chen;J. Mt. Res.,2002

5. A discussion on the issues of the re-construction of ecological shelter zone on the upper reaches of the Yangtze River;Pan;Acta Ecol. Sin.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3