Landscape Perception Identification and Classification Based on Electroencephalogram (EEG) Features

Author:

Wang Yuting,Wang Shujian,Xu Ming

Abstract

This paper puts forward a new method of landscape recognition and evaluation by using aerial video and EEG technology. In this study, seven typical landscape types (forest, wetland, grassland, desert, water, farmland, and city) were selected. Different electroencephalogram (EEG) signals were generated through different inner experiences and feelings felt by people watching video stimuli of the different landscape types. The electroencephalogram (EEG) features were extracted to obtain the mean amplitude spectrum (MAS), power spectrum density (PSD), differential entropy (DE), differential asymmetry (DASM), rational asymmetry (RASM), and differential caudality (DCAU) in the five frequency bands of delta, theta, alpha, beta, and gamma. According to electroencephalogram (EEG) features, four classifiers including the back propagation (BP) neural network, k-nearest neighbor classification (KNN), random forest (RF), and support vector machine (SVM) were used to classify the landscape types. The results showed that the support vector machine (SVM) classifier and the random forest (RF) classifier had the highest accuracy of landscape recognition, which reached 98.24% and 96.72%, respectively. Among the six classification features selected, the classification accuracy of MAS, PSD, and DE with frequency domain features were higher than those of the spatial domain features of DASM, RASM and DCAU. In different wave bands, the average classification accuracy of all subjects was 98.24% in the gamma band, 94.62% in the beta band, and 97.29% in the total band. This study identifies and classifies landscape perception based on multi-channel EEG signals, which provides a new idea and method for the quantification of human perception.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3