Succession and Driving Factors of Periphytic Community in the Middle Route Project of South-to-North Water Division (Henan, China)

Author:

Chen Xiaonuo,Wang Xiaojun,Li Yuying,Yao Yinlei,Zhang Yun,Jiang Yeqing,Lei Xiaohui,Liu Han,Wu NaichengORCID,Fohrer NicolaORCID

Abstract

The Middle Route Project of the South-to-North Water Diversion is an artificially independent system that does not connect to other surface waters. Excessive periphyton proliferation causes a series of environmental problems in the canal. In this study, the periphyton community and environmental factors on the left and right banks of the canal in the algal growing area were investigated and sampled six times (June, September, and November of 2019 and 2020). The succession pattern of the attached organism community in the artificial canal was analyzed, and the key factors affecting the algal community were analyzed using RDA and GAM. The results showed that the seasonal variability of the environmental factors was more significant than the spatial variability. A total of 114 taxa of periphytic algae were found, belonging to seven phyla and 69 genera, and mainly composed of Bacillariophyta. Species richness was ranked as Bacillariophyta (60 taxa), Chlorophyta (31 taxa) and Cyanobacteria (15 taxa), and higher in autumn than in summer. The dominant taxa were Cymbella sp., Fragilaria sp., Navicula sp. and Diatoma sp. The abundance of periphytic algal varied from 0.07 × 105 to 8.99 × 105 ind./cm2, with trends similar to that of species richness. The redundancy analysis and generalized additive model showed that water temperature and nutrient concentration were the key factors influencing the structure of the algal community, followed by discharge rate and velocity, which were the determinants of the spatial and temporal patterns of the algal community. In view of the influence of discharge and velocity on the structure of algal communities, it is suggested that ecological scheduling could be used to regulate the structure of the algal community on the canal wall in the operation of later water division projects to ensure the safety of water division.

Funder

the National Natural Science Foundation of China

the higher discipline innovation and talent introduction base of Henan Province

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3