Abstract
The high number of fatal crashes caused by driver drowsiness highlights the need for developing reliable drowsiness detection methods. An ideal driver drowsiness detection system should estimate multiple levels of drowsiness accurately without intervening in the driving task. This paper proposes a multi-level drowsiness detection system by a deep neural network-based classification system using a combination of electrocardiogram and respiration signals. The proposed method is based on a combination of convolutional neural networks (CNNs) and long short-term memory (LSTM) networks for classifying drowsiness by concurrently using heart rate variability (HRV), power spectral density of HRV, and respiration rate signal as inputs. Two models, a CNN-based model and a hybrid CNN-LSTM-based model were used for multi-level classifications. The performance of the proposed method was evaluated on experimental data collected from 30 subjects in a simulated driving environment. The performance and the results of both models are presented and compared. The best performance for both three-level and five-level drowsiness classifications was achieved by the CNN-LSTM model. The results indicate that the three-level and five-level classifications of drowsiness can be achieved with 91 and 67% accuracy, respectively.
Funder
Cognitive Science and Technology Council
the Academy of Finland
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献