Study of the Deep Processes of COVID-19 in Russia: Finding Ways to Identify Preventive Measures

Author:

Anyutin Alexander P.,Khodykina Tatiana M.ORCID,Akimova Ekaterina I.,Belova Elena V.,Shashina Ekaterina A.ORCID,Shcherbakov Denis V.,Makarova Valentina V.ORCID,Zabroda Nadezhda N.,Klimova Anna A.,Ermakova Nina A.ORCID,Isiutina-Fedotkova Tatiana S.ORCID,Zhernov Yury V.ORCID,Polibin Roman V.ORCID,Mitrokhin Oleg V.ORCID

Abstract

The novel coronavirus disease 2019 (COVID-19) pandemic has had a huge impact on all areas of human life. Since the risk of biological threats will persist in the future, it is very important to ensure mobilization readiness for a prompt response to the possible emergence of epidemics of infectious diseases. Therefore, from both a theoretical and practical standpoint, it is currently necessary to conduct a thorough examination of the COVID-19 epidemic. The goal of this research is to investigate the underlying processes that led to the COVID-19 pandemic in Russia and to identify ways to improve preventive measures and ensure mobilization readiness for a quick response to potential COVID-19-like pandemics. This research will analyze the daily dynamics of the number of infection cases and the number of new lethal cases of COVID-19. We analyzed the daily number of new cases of COVID-19 infection N(d), the daily number of new lethal cases L(d), their percentage ratio L(d)/N(d) 100% in Russia for 2 years of the pandemic (from the beginning of the pandemic to 23 March 2022), the rate of increase and decrease of these indicators (dN(d)/dd and dL(d)/dd), as well as their spectra created on the basis of wavelet analysis. Wavelet analysis of the deep structure of the N(d) and L(d) wavelet spectra made it possible to identify the presence of internal cycles, the study of which makes it possible to predict the presence of days with the maximum number of infections and new deaths in a pandemic similar to COVID-19 and outline ways and methods for improving preventive measures and measures to ensure mobilization readiness for a rapid response to the potential emergence of pandemics similar to COVID-19.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3