Particulate Matter Emission Factors for Dairy Facilities and Cattle Feedlots during Summertime in Texas

Author:

Habib Mohammad Ruzlan,Baticados El Jirie N.,Capareda Sergio C.ORCID

Abstract

Particulate matter (PM) emissions from dairies and feedlot sources require regular emission factor update. Likewise, development of simple measurement technique to accurately measure pollution concentration is warranted to limit the impact of air pollution and take necessary actions. During June of 2020, a dairy facility from central Texas and a feedlot from the Texas Panhandle region, titled as Dairy B and Feedlot C, respectively, were chosen for measurement of PM emissions in the state of Texas to represent dairy facilities and cattle feedlots PM emission rates. Four stations, each assigned with an EPA-approved Federal Reference Method (FRM) sampler, Texas A&M University (TAMU) designed sampler and handheld non-FRM AEROCET (MET One Instruments) sampler for collocation, were selected within each sampling locations. Drones were also utilized mounted with a handheld AEROCET sampler for simultaneously sampling at a certain height. PM2.5 emissions of Dairy B were all below 24-h PM2.5 standard of 35 μg m−3 as specified by National Ambient Air Quality Standards (NAAQS) even at the 98th percentile. The PM ratio between regulated PM10 to PM2.5 was determined to make an estimate of relative percentage of coarser particles to fine particles in both feedlot and the dairy representative animal facilities. The maximum mean emission factor determined using AERMOD for PM2.5 and PM10 was found to be 0.53 and 7.09 kg 1000-hd−1 d−1, respectively, for the dairy facility while 8.93 and 33.42 kg 1000-hd−1 d−1, respectively, for the feedlot. A conversion factor and correlation matrix were developed in this study to relate non-FRM sampler data from the handheld AERCET samplers with FRM samplers. Cheaper handheld samplers (AEROCETs) may play a potential role in quick and relatively instant measurement of PM emissions to initiate necessary preventive actions to control PM emission from dairy facility and feedlot sources.

Funder

State of Texas Air Quality Seed

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference46 articles.

1. Cattle (January 2020). National Agricultural Statistics Service (NASS), Agricultural Statistics Board, USDA. 2020.

2. Cattle and Beef. Economic Research Service, USDA. 2020.

3. Census of Agriculture (2012). National Agricultural Statistics Service, USDA. 2020.

4. Font-Palma, C. Methods for the Treatment of Cattle Manure—A Review. J. Carbon Res., 2019. 5.

5. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions;Knapp;J. Dairy Sci.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3