Bayesian Hierarchical Modelling of Historical Data of the South African Coal Mining Industry for Compliance Testing

Author:

Made FelixORCID,Kandala Ngianga-Bakwin,Brouwer DerkORCID

Abstract

Bayesian hierarchical framework for exposure data compliance testing is highly recommended in occupational hygiene. However, it has not been used for coal dust exposure compliance testing in South Africa (SA). The Bayesian analysis incorporates prior information, which increases solid decision making regarding risk management. This study compared the posterior 95th percentile (P95) of the Bayesian non-informative and informative prior from historical data relative to the occupational exposure limit (OEL) and exposure categories, and the South African Mining Industry Code of Practice (SAMI CoP) approach. A total of nine homogenous exposure groups (HEGs) with a combined 243 coal mine workers’ coal dust exposure data were included in this study. Bayesian framework with Markov chain Monte Carlo (MCMC) simulation to draw a full P95 posterior distribution relative to the OEL was used to investigate compliance. We obtained prior information from historical data and employed non-informative prior distribution to generate the posterior findings. The findings were compared to the SAMI CoP. The SAMI CoP 90th percentile (P90) indicated that one HEG was compliant (below the OEL), while none of the HEGs in the Bayesian methods were compliant. The analysis using non-informative prior indicated a higher variability of exposure than the informative prior according to the posterior GSD. The median P95 from the non-informative prior were slightly lower with wider 95% credible intervals (CrI) than the informative prior. All the HEGs in both Bayesian approaches were in exposure category four (poorly controlled), with the posterior probabilities slightly lower in the non-informative uniform prior distribution. All the methods mainly indicated non-compliance from the HEGs. The non-informative prior, however, showed a possible potential of allocating HEGs to a lower exposure category, but with high uncertainty compared to the informative prior distribution from historical data. Bayesian statistics with informative prior derived from historical data should be highly encouraged in coal dust overexposure assessments in South Africa for correct decision making.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference36 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian Hierarchical Framework from Expert Elicitation in the South African Coal Mining Industry for Compliance Testing;International Journal of Environmental Research and Public Health;2023-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3