Hot Deformation Behavior and Microstructural Evolution of PM Ti43Al9V0.3Y with Fine Equiaxed γ and B2 Grain Microstructure

Author:

Zhang Dongdong,Chen YuyongORCID,Zhang Guoqing,Liu Na,Kong Fantao,Tian Jing,Sun Jianfei

Abstract

The hot deformation behavior and microstructure evolution of powder metallurgy (PM) Ti43Al9V0.3Y alloy with fine equiaxed γ and B2 grains were investigated using uniaxial hot compression. Its stress exponent and activation energy were 2.78 and 295.86 kJ/mol, respectively. The efficiency of power dissipation and instability parameters were evaluated, and processing maps at 50% and 80% strains were developed. It is demonstrated that the microstructure evolution was dependent on the temperature, strain, and strain rate. Both temperature and strain increases led to a decrease in the γ phase. Moreover, dynamic recrystallization (DRX) and grain boundary slip both played important roles in deformation. Reasonable parameters for secondary hot working included temperatures above 1100 °C but below 1200 °C with a strain rate of less than 1 s−1 at 80% strain. Suitable hot working parameters at 50% strain were 1150–1200 °C/≤1 s−1 and 1000–1200 °C/≤0.05 s−1.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3