Electromagnetic Shielding Performance of Carbon Black Mixed Concrete with Zn–Al Metal Thermal Spray Coating

Author:

Lee Han-Seung,Park Jin-hoORCID,Singh Jitendra KumarORCID,Choi Hyun-Jun,Mandal SoumenORCID,Jang Jong-Min,Yang Hyun-Min

Abstract

The electromagnetic pulse (EMP) is a destructive phenomenon which harms the building, telecommunication, and IT based infrastructure. Thus, it is required to reduce the effect of EMP using shielding materials. In the present study, we have used different thickness of concrete walls by incorporating 1 and 5 wt% of carbon black, as well as 100 µm thick Zn–Al coating using the arc thermal metal spraying method (ATMSM). The EMP was evaluated using waveguide measurement fixture for shielding performance of the concrete wall in the range of 0.85 to 1 GHz frequency. The results reveal that the maximum value, i.e., 41.60 dB is shown by the 5-300-N specimen before application of Zn–Al coating where the thickness of concrete wall was 300 mm and 5% carbon black. However, once the 100 µm thick Zn–Al coating was applied on concrete specimen, this value was increased up to 89.75 dB. The increase in shielding values around 48 dB after using the Zn–Al coating is attributed to the reflection loss of the metal thermal spray coating. Thus, the Zn–Al coating can be used for EMP application instead of metallic plate.

Publisher

MDPI AG

Subject

General Materials Science

Reference49 articles.

1. Study on defense measure of EMP of nuclear and electromagnetic pulse weapon;Cho;DefenseTech,2007

2. Electromagnetic Compatibility (EMC)—Part 2: Environment—Section 9: Description of HEMP Environment–Radiated Disturbance,1996

3. The Swiss EMP Concept of General Defense. IEEE Antennas Propag;Jacob;Soc. Newsl.,1987

4. Truth of EMP threat and development plan;Kim;DefenceTech,2013

5. Countermeasure of Electromagnetic Pulse (EMP);Choi;DefenseTech,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3