Novel Poly(Caprolactone)/Epoxy Blends by Additive Manufacturing

Author:

Dorigato Andrea,Rigotti Daniele,Pegoretti AlessandroORCID

Abstract

The aim of this work was the development of a thermoplastic/thermosetting combined system with a novel production technique. A poly(caprolactone) (PCL) structure has been designed and produced by fused filament fabrication, and impregnated with an epoxy matrix. The mechanical properties, fracture toughness, and thermal healing capacities of this blend (EP-PCL(3D)) were compared with those of a conventional melt mixed poly(caprolactone)/epoxy blend (EP-PCL). The fine dispersion of the PCL domains within the epoxy in the EP-PCL samples was responsible of a noticeable toughening effect, while in the EP-PCL(3D) structure the two phases showed an independent behavior, and fracture propagation in the epoxy was followed by the progressive yielding of the PCL domains. This peculiar behavior of EP-PCL(3D) system allowed the PCL phase to express its full potential as energy absorber under impact conditions. Optical microscope images on the fracture surfaces of the EP-PCL(3D) samples revealed that during fracture toughness tests the crack mainly propagated within the epoxy phase, while PCL contributed to energy absorption through plastic deformation. Due to the selected PCL concentration in the blends (35 vol %) and to the discrepancy between the mechanical properties of the constituents, the healing efficiency values of the two systems were rather limited.

Publisher

MDPI AG

Subject

General Materials Science

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3