The 2018 Mw 7.5 Palu Earthquake: A Supershear Rupture Event Constrained by InSAR and Broadband Regional Seismograms

Author:

Fang Jin,Xu CaijunORCID,Wen YangmaoORCID,Wang Shuai,Xu Guangyu,Zhao Yingwen,Yi Lei

Abstract

The 28 September 2018 Mw 7.5 Palu earthquake occurred at a triple junction zone where the Philippine Sea, Australian, and Sunda plates are convergent. Here, we utilized Advanced Land Observing Satellite-2 (ALOS-2) interferometry synthetic aperture radar (InSAR) data together with broadband regional seismograms to investigate the source geometry and rupture kinematics of this earthquake. Results showed that the 2018 Palu earthquake ruptured a fault plane with a relatively steep dip angle of ~85°. The preferred rupture model demonstrated that the earthquake was a supershear event from early on, with an average rupture speed of 4.1 km/s, which is different from the common supershear events that typically show an initial subshear rupture. The rupture expanded rapidly (~4.1 km/s) from the hypocenter and propagated bilaterally towards the north and south along the strike direction during the first 8 s, and then to the south. Four visible asperities were ruptured during the slip pulse propagation, which resulted in four significant deformation lobes in the coseismic interferogram. The maximum slip of 6.5 m was observed to the south of the city of Palu, and the total seismic moment released within 40 s was 2.64 × 1020 N·m, which was equivalent to Mw 7.55. Our results shed some light on the transtensional tectonism in Sulawesi, given that the 2018 Palu earthquake was dominated by left-lateral strike slip (slip maxima is 6.2 m) and that some significant normal faulting components (slip maxima is ~3 m) were resolved as well.

Funder

the national key research and development plan of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3