Determining the Boundary and Probability of Surface Urban Heat Island Footprint Based on a Logistic Model

Author:

Qiao ZhiORCID,Wu Chen,Zhao Dongqi,Xu XinliangORCID,Yang Jilin,Feng Li,Sun Zongyao,Liu Luo

Abstract

Studies of the spatial extent of surface urban heat island (SUHI or UHISurf) effects require precise determination of the footprint (FP) boundary. Currently available methods overestimate or underestimate the SUHI FP boundary, and can even alter its morphology, due to theoretical limitations on the ability of their algorithms to accurately determine the impacts of the shape, topography, and landscape heterogeneity of the city. The key to determining the FP boundary is identifying background temperatures in reference rural regions. Due to the instability of remote sensing data, these background temperatures should be determined automatically rather than manually, to eliminate artificial bias. To address this need, we developed an algorithm that adequately represents the decay of land surface temperature (LST) from the urban center to surrounding rural regions, and automatically calculates thresholds for reference rural LSTs in all directions based on a logistic curve. In this study, we applied this algorithm with data from the Aqua Moderate Resolution Imaging Spectroradiometer (Aqua/MODIS) 8-day level 3 (L3) LST global grid product to delineate precise SUHI FPs for the Beijing metropolitan area during the summers of 2004–2018 and determine the interannual and diurnal variations in FP boundaries and their relationship with SUHI intensity.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3