Downscaling Land Surface Temperature from MODIS Dataset with Random Forest Approach over Alpine Vegetated Areas

Author:

Bartkowiak PaulinaORCID,Castelli Mariapina,Notarnicola ClaudiaORCID

Abstract

In this study, we evaluated three different downscaling approaches to enhance spatial resolution of thermal imagery over Alpine vegetated areas. Due to the topographical and land-cover complexity and to the sparse distribution of meteorological stations in the region, the remotely-sensed land surface temperature (LST) at regional scale is of major area of interest for environmental applications. Even though the Moderate Resolution Imaging Spectroradiometer (MODIS) LST fills the gap regarding high temporal resolution and length of the time-series, its spatial resolution is not adequate for mountainous areas. Given this limitation, random forest algorithm for downscaling LST to 250 m spatial resolution was evaluated. This study exploits daily MODIS LST with a spatial resolution of 1 km to obtain sub-pixel information at 250 m spatial resolution. The nonlinear relationship between coarse resolution MODIS LST (CR) and fine resolution (FR) explanatory variables was performed by building three different models including: (i) all pixels (BM), (ii) only pixels with more than 90% of vegetation content (EM1) and (iii) only pixels with 75% threshold of homogeneity for vegetated land-cover classes (EM2). We considered normalized difference vegetation index (NDVI) and digital elevation model (DEM) as predictors. The performances of the thermal downscaling methods were evaluated by the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) between the downscaled dataset and Landsat LST. Validation indicated that the error values for vegetation fraction (EM1, EM2) were smaller than for basic modelling (BM). BM model determined averaged RMSE of 2.3 K and MAE of 1.8 K. Enhanced methods (EM1 and EM2) gave slightly better results yielding 2.2 K and 1.7 K for RMSE and MAE, respectively. In contrast to the EMs, BM showed a reduction of 22% and 18% of RMSE and MAE respectively with regard to Landsat and the original MODIS LST. Despite some limitations, mainly due to cloud contamination effect and coarse resolution pixel heterogeneity, random forest downscaling exhibits a large potential for producing improved LST maps.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3