Virtual Restoration of Stained Chinese Paintings Using Patch-Based Color Constrained Poisson Editing with Selected Hyperspectral Feature Bands

Author:

Zhou Pingping,Hou Miaole,Lv Shuqiang,Zhao Xuesheng,Wu Wangting

Abstract

Stains, as one of most common degradations of paper cultural relics, not only affect paintings’ appearance, but sometimes even cover the text, patterns, and colors contained in the relics. Virtual restorations based on common red–green–blue images (RGB) which remove the degradations and then fill the lacuna regions with the image’s known parts with the inpainting technology could produce a visually plausible result. However, due to the lack of information inside the degradations, they always yield inconsistent structures when stains cover several color materials. To effectively remove the stains and restore the covered original contents of Chinese paintings, a novel method based on Poisson editing is proposed by exploiting the information inside the degradations of selected three feature bands as the auxiliary information to guide the restoration since the selected feature bands captured fewer stains and could expose the covered information. To make the Poisson editing suitable for stain removal, the feature bands were also exploited to search for the optimal patch for the pixels in the stain region, and the searched patch was used to construct the color constraint on the original Poisson editing to ensure the restoration of the original color of paintings. Specifically, this method mainly consists of two steps: feature band selection from hyperspectral data by establishing rules and reconstruction of stain contaminated regions of RGB image with color constrained Poisson editing. Four Chinese paintings (‘Fishing’, ‘Crane and Banana’, ‘the Hui Nationality Painting’, and ‘Lotus Pond and Wild Goose’) with different color materials were used to test the performance of the proposed method. Visual results show that this method can effectively remove or dilute the stains while restoring a painting’s original colors. By comparing values of restored pixels with nonstained pixels (reference of their same color materials), images processed by the proposed method had the lowest average root mean square error (RMSE), normalized absolute error (NAE), and average differences (AD), which indicates that it is an effective method to restore the stains of Chinese paintings.

Funder

the National key research and development program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3