Oceanic Eddy Identification Using an AI Scheme

Author:

Xu GuangjunORCID,Cheng Cheng,Yang Wenxian,Xie Wenhong,Kong Lingmei,Hang Renlong,Ma Furong,Dong Changming,Yang JingsongORCID

Abstract

Oceanic eddies play an important role in global energy and material transport, and contribute greatly to nutrient and phytoplankton distribution. Deep learning is employed to identify oceanic eddies from sea surface height anomalies data. In order to adapt to segmentation problems for multi-scale oceanic eddies, the pyramid scene parsing network (PSPNet), which is able to satisfy the fusion of semantics and details, is applied as the core algorithm in the eddy detection methods. The results of eddies identified from this artificial intelligence (AI) method are well compared with those from a traditional vector geometry-based (VG) method. More oceanic eddies are detected by the AI algorithm than the VG method, especially for small-scale eddies. Therefore, the present study demonstrates that the AI algorithm is applicable of oceanic eddy detection. It is one of the first few of efforts to bridge AI techniques and oceanography research.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3