The Integration of Photodiode and Camera for Visible Light Positioning by Using Fixed-Lag Ensemble Kalman Smoother

Author:

Zhuang Yuan,Wang Qin,Li You,Gao ZhouzhengORCID,Zhou BingpengORCID,Qi Longning,Yang Jun,Chen RuizhiORCID,El-Sheimy Naser

Abstract

Visible Light Positioning (VLP) has become one of the most popular positioning and navigation systems in this decade. Filter-based VLP systems can provide real-time solutions but have limited accuracy. On the contrary, fixed-interval smoothers can help VLP achieve higher accuracy but require post-processing. In this article, a trade-off solution, Fixed-Lag Ensemble Kalman Smoother (FLEnKS), is proposed for VLP to achieve a semi-real-time and accurate positioning solution. The forward part of the FLEnKS is based on the Ensemble Kalman Filter (EnKF), which uses stochastic sampling with ensemble members and enables a better reflection of the features of nonlinear systems. The backward filter in the FLEnKS compensates for the estimation error from the forward filter using the linearization based on error states and further reduces the estimation error. Furthermore, multiple data from both photodiode (PD) and camera are fused in the proposed FLEnKS for VLP, which further improves the accuracy of conventional VLP with a single data source. Preliminary field test results show that the proposed FLEnKS provides a semi-real-time positioning solution with the average 3D positioning accuracy of 15.63 cm in dynamic tests.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Lag Smoother for State Estimation;Sensors;2022-07-15

2. Deep Learning-Based Fusion of Visible Light Positioning and IMU Sensors;2021 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS);2021-12

3. FusionVLP: The Fusion of Photodiode and Camera for Visible Light Positioning;IEEE Transactions on Vehicular Technology;2021-11

4. Indoor navigation: state of the art and future trends;Satellite Navigation;2021-05-03

5. A new visual/inertial integrated navigation algorithm based on sliding-window factor graph optimisation;Journal of Navigation;2020-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3