Abstract
Polarimetric synthetic aperture radar (PolSAR) building extraction plays an important role in urban planning, disaster management, etc. In this paper, a building extraction method using refined model-based decomposition and robust scattering feature is proposed. On the one hand, the newly proposed refined five-component decomposition and its derived scattering powers are applied to detect the buildings. On the other hand, by combining the matrix elements and co-polarization correlation coefficient, a robust feature is proposed to discriminate buildings and non-buildings. Both these two preliminary extraction results are obtained through thresholding segmentation. Finally, they are fused via the HX Markov random fields so as to further improve the extraction accuracy. The performance of the proposed method is demonstrated and evaluated with Gaofen-3 and uninhabited aerial vehicle SAR full PolSAR data over different test sites. Outputs show that the proposed method outperforms other state-of-the-art methods and provides an overall accuracy of over 90%.
Funder
National Natural Science Foundation of China
Excellent Youth Foundation Hunan Scientific Committee
Subject
General Earth and Planetary Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献