Design of Random Warranty and Maintenance Policy: From a Perspective of the Life Cycle

Author:

Shang Lijun,Yu Xiguang,Wang Liying,Du YongjunORCID

Abstract

Driven by digital technologies, it is possible that high-tech equipment management personnel use monitored job cycles to ensure products’ operation and maintenance over their life cycle. By means of monitored job cycles, this paper designs two categories of random maintenance policies: a two-stage two-dimensional free repair warranty (2DFRW) policy and a random hybrid periodic replacement (RHPR) policy. The 2DFRW policy is performed to ensure the product’s operation and maintenance over the warranty stage. Under such a policy, a product is minimally repaired at each failure, and regions of the second-stage warranty are set to be diverse to remove all inequities produced by limitations of the first-stage warranty. The warranty cost of two-stage 2DFRW is built and discussed. The RHPR policy is modeled to ensure the product’s operation and maintenance over the post-warranty stage. Under this policy, depending on the final expiry of the two-stage 2DFRW, a bivariate random periodic replacement (BRPR) policy and a univariate random periodic replacement (URPR) policy are skillfully used to reduce the maintenance cost over the post-warranty stage and maximally extend the residual useful time of the product through the warranty. The expected cost rate over the product’s operation and maintenance cycle is derived on the basis of renewal rewarded theorem. The optimal RHPR policy is analyzed by minimizing the cost rate. The presented models are numerically analyzed to explore hidden characteristics.

Funder

the Base and Basic Applied Study of Guangdong Province

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3