Abstract
An original innovative two-dimensional (2D) multi-layer model based on the Maxwell–Fourier method for the diagnosis of a polymer exchange membrane (PEM) fuel cell (FC) stack is presented. It is possible to determine the magnetic field distribution generated around the PEMFC stack from the (non-)homogenous current density distribution inside the PEMFC stack. Analysis of the magnetic field distribution can indicate whether the FC is healthy or faulty. In this way, an explicit, accurate and fast analytical model can allow the health state of an FC to be studied. To evaluate the capacity and the efficiency of the 2D analytical model, the distribution of local quantities (i.e., magnetic vector potential and magnetic field) in a PEMFC stack has been validated with those obtained by the 2D finite-element analysis (FEA). The comparisons demonstrate excellent results both in terms of amplitude and waveform. The validation of this 2D analytical model is essential for the subsequent generation of an inverse model useful for the diagnosis of a PEMFC.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献