A Novel Bio-Inspired Motion Direction Detection Mechanism in Binary and Grayscale Background

Author:

Hua YuxiaoORCID,Todo YukiORCID,Tang Zheng,Tao SichenORCID,Li Bin,Inoue Riku

Abstract

The visual system plays a vital role in the daily life of humans, as more than 90 percent of the external information received by the human brain throughout the day comes from the visual system. However, how the human brain processes the received visual information remains a mystery. The information received from the external through the visual system can be divided into three main categories, namely, shape features, color features, and motion features. Of these, motion features are considered the key to deciphering the secrets of the visual system due to their independence and importance. In this paper, we propose a novel bio-inspired motion direction detection mechanism using direction-selective ganglion cells to explore the mystery of motion information extraction and analysis. The mechanism proposed in this paper is divided into two parts: local motion direction detection neurons and global motion direction detection neurons; the former is used to extract motion direction information from the local area, while the latter infers global motion direction from the local motion direction information. This mechanism is more consistent with the biological perception of the human natural visual system than the previously proposed model and has a higher biological plausibility and greater versatility. It is worth mentioning that we have overcome the problem in which the previous motion direction detection model could only be applied in the binary background by introducing the horizontal cells. Through the association formed by horizontal cells and bipolar cells, this model can be applied to recognizing problems of motion direction detection on a grayscale background. To further validate the effectiveness of the proposed model, a series of experiments with objects of different sizes, shapes, and positions are conducted by computer simulation. According to the simulation results, this model has been proven to have high accuracy rates regardless of objects’ sizes, shapes, and positions in all experiments. Furthermore, the proposed model is verified to own more stable accuracy rates and stronger noise immunity by comparing it with the recognized superior classical convolutional neural network in a background of different percentage noise.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference27 articles.

1. An introduction to bio-inspired artificial neural network architectures;Fasel;Acta Neurol. Belg.,2003

2. A 125 GOPS 583 mW Network-on-Chip Based Parallel Processor With Bio-Inspired Visual Attention Engine

3. Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future

4. Brain Rules: 12 Principles for Surviving and Thriving at Work, Home, and School;Medina,2011

5. Colour, form, and movement are not perceived simultaneously

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3