Abstract
Dust is one of the most burdensome hazards found in the environment. It is composed of crushed solids that pose a threat to the health and life of people, machines and machine components. At high concentration levels, it can reduce visibility. All of these negative phenomena occur during the process of underground mining, where dust hazards are common. The negative impact of dust on the efficacy of the mining process prompts research in this area. The following study presents a method developed for model studies of dust dispersion in driven dog headings. This issue is immensely important due to the fact that these dog headings belong to a group of unidirectional excavations (including tunnelling). This paper presents the results of model studies on dust dispersion in driven dog headings. The main focus is on the analysis of the distribution of dust concentration along a dog heading during the mining process. In order to achieve this goal, a model test method based on the finite volume method, which is included in the group of CFD methods, was developed. Analyses were carried out for two different values of dust emission from the face of the excavation for the transient state. The results made it possible to determine areas with the highest potential for dust concentration. The size and location of these areas are mainly dependent on the amount of dust emissions during the mining process. The results can support the process of managing dust prevention and protection of workers during the mining excavation process.
Funder
Transilvania University of Brasov
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)