High-Cardinality Categorical Attributes and Credit Card Fraud Detection

Author:

Carneiro Emanuel MinedaORCID,Forster Carlos Henrique QuartucciORCID,Mialaret Lineu Fernando Stege,Dias Luiz Alberto Vieira,da Cunha Adilson Marques

Abstract

Credit card transactions may contain some categorical attributes with large domains, involving up to hundreds of possible values, also known as high-cardinality attributes. The inclusion of such attributes makes analysis harder, due to results with poorer generalization and higher resource usage. A common practice is, therefore, to ignore such attributes, removing them, albeit wasting the information they provided. Contrariwise, this paper reports our findings on the positive impacts of using high-cardinality attributes on credit card fraud detection. Thus, we present a new algorithm for domain reduction that preserves the fraud-detection capabilities. Experiments applying a deep feedforward neural network on real datasets from a major Brazilian financial institution have shown that, when measured by the F-1 metric, the inclusion of such attributes does improve fraud-detection quality. As a main contribution, this proposed algorithm was able to reduce attribute cardinality, improving the training times of a model while preserving its predictive capabilities.

Funder

Brazilian Aeronautics Institute of Technology

Casimiro Montenegro Filho Foundation

2RP Net Enterprise

Brazilian Ministry of Education

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference55 articles.

1. Sequence classification for credit-card fraud detection

2. Card Fraud Losses Reach $22.80 Billion,2017

3. 2016 Global Consumer Card Fraud: Where Card Fraud Is Coming From;Knieff,2016

4. Ensemble learning for credit card fraud detection

5. Credit Card Fraud Detection with Artificial Immune System;Gadi;Proceedings of the Artificial Immune Systems,2008

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3