Stability Analysis on the Moon’s Rotation in a Perturbed Binary Asteroid

Author:

Gao Yunfeng,Cheng Bin,Yu YangORCID,Lv Jing,Baoyin Hexi

Abstract

Numerical calculation provides essential tools for deep space exploration, which are indispensable to mission design and planetary research. In a specific case of binary asteroid defense such as the DART mission, an accurate understanding of the possible dynamical responses and the system’s stability and engineers’ prerequisite. In this paper, we discuss the numeric techniques for tracking the year-long motion of the secondary after being perturbed, based upon which its rotational stability is analyzed. For long-term simulations, we compared the performances of several integrating schemes in the scenario of a post-impact full two-body system, including low- and high-order Runge–Kutta methods, and a symplectic integrator that combines the finite element method with a symplectic integral format. For rotational stability analysis of the secondary, we focus on the rotation of the secondary around its long-axis. We calculated a linearised error propagation matrix and found that, in the case of tidal locking of the secondary to the primary, the rotation is stable; as the perturbation amplitude of the spin angular velocity of the secondary increases, the rotation will lose stability and will be prone to being unstable in the long-axis direction of the secondary. Furthermore, we investigated the one-year-long influences of the non-spherical perturbations of the primary and the secondary.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3