Author:
Lee Jonggeon,Kim Euiyoung,Lee Jaehun
Abstract
This study presents a data reconstruction-based two-step non-intrusive reduced-order modeling (ROM) based on discrete Fourier transformation (DFT) and proper orthogonal decomposition-radial basis function (POD-RBF) interpolation. To efficiently approximate a system for various parametric inputs, two offline and one online stage are proposed. The first offline stage adjusts and reconstructs sampled data using a scaling factor. During the adjusting procedure, the fast Fourier transform operation is used to transform a domain between the time and frequency, and the POD-RBF interpolation method efficiently generates adjusted data. The second offline stage constructs multiple ROMs in the frequency domain for interpolation with respect to the parameter. Finally, in the online stage, the solution field depending on the changes in input parameters, is approximated using the POD-RBF interpolation and the inverse Fourier transformation. The accuracy and efficiency of the proposed method are verified using the 2-D unsteady incompressible Newtonian fluid problems and are compared to the OpenFOAM software program showing remarkable efficiencies in computing approximated solutions.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献