Machine Learning-Based Estimation of the Compressive Strength of Self-Compacting Concrete: A Multi-Dataset Study

Author:

Hoang Nhat-Duc

Abstract

This paper aims at performing a comparative study to investigate the predictive capability of machine learning (ML) models used for estimating the compressive strength of self-compacting concrete (SCC). Seven prominent ML models, including deep neural network regression (DNNR), extreme gradient boosting machine (XGBoost), gradient boosting machine (GBM), adaptive boosting machine (AdaBoost), support vector regression (SVR), Levenberg–Marquardt artificial neural network (LM-ANN), and genetic programming (GP), are employed. Four experimental datasets, compiled in previous studies, are used to construct the ML-based methods. The models’ generalization capabilities are reliably evaluated by 20 independent runs. Experimental results point out the superiority of the DNNR, which has excelled other models in three out of four datasets. The XGBoost is the second-best model, which has gained the first rank in one dataset. The outcomes point out the great potential of the utilized ML approaches in modeling the compressive strength of SCC. In more details, the coefficient of determination (R2) surpasses 0.8 and the mean absolute percentage error (MAPE) is always below 15% for all datasets. The best results of R2 and MAPE are 0.93 and 7.2%, respectively.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3