Analysis of a Transversely Isotropic Annular Circular Cylinder Immersed in a Magnetic Field Using the Moore–Gibson–Thompson Thermoelastic Model and Generalized Ohm’s Law

Author:

Moaaz Osama,Abouelregal Ahmed E.ORCID,Alsharari FahadORCID

Abstract

The main objective of this work is to study the homogeneous thermoelastic interactions in an isotropic hollow thin cylinder immersed in an electric–magnetic field using the linear Moore–Gibson–Thompson theory of thermoelasticity, taking into account the generalized Ohm’s law. The MGT system of thermoelastic equations for the new model is created by incorporating a relaxation period in the Green–Naghdi type III framework. In addition, the Maxwell equations that investigate the effect of the electromagnetic field are presented. While the outer surface of the hollow cylinder is thermally insulated and free of traction, the interior surface is both free of traction and subject to thermal shock. To convert the problem to the space domain only, the Laplace transform methodology is used to solve the governing equations generated in the transformed domain. The theoretical results are computed dynamically and are graphically displayed for a transversely isotropic material using the Honig and Hirdes approach. A comparison of findings based on different (classical and generalized) thermoelastic theories is provided, followed by a discussion on the impact of the applied electromagnetic field.

Funder

Deputyship for Research and Innovation, Ministry of Education, Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference44 articles.

1. Thermoelasticity and Irreversible Thermodynamics

2. A form of heat-conduction equations which eliminates the paradox of instantaneous propagation;Cattaneo;Compt. Rend.,1958

3. A generalized dynamical theory of thermoelasticity

4. Thermoelasticity

5. A re-examination of the basic postulates of thermomechanics;Green;Proc. R. Soc. Lond.,1991

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3