Application of Functional Modification of Iron-Based Materials in Advanced Oxidation Processes (AOPs)

Author:

Liu Mengting,Zhao Zhenzhen,He Chiquan,Wang FeifeiORCID,Liu Xiaoyan,Chen Xueping,Liu JialinORCID,Wang DaoyuanORCID

Abstract

Advanced oxidation processes (AOPs) have become a favored approach in wastewater treatment due to the high efficiency and diverse catalyzed ways. Iron-based materials were the commonly used catalyst due to their environmental friendliness and sustainability in the environment. We collected the published papers relative to the application of the modified iron-based materials in AOPs between 1999 and 2020 to comprehensively understand the related mechanism of modified materials to improve the catalytic performance of iron-based materials in AOPs. Related data of iron-based materials, modification types, target pollutants, final removal efficiencies, and rate constants were extracted to reveal the critical process of improving the catalytic efficiency of iron-based materials in AOPs. Our results indicated that the modified materials through various mechanisms to enhance the catalytic performance of iron-based materials. The principal aim of iron-based materials modification in AOPs is to increase the content of available Fe2+ and enhance the stability of Fe2+ in the system. The available Fe2+ is elevated by the following mechanisms: (1) modified materials accelerate the electron transfer to promote the Fe3+/Fe2+ reaction cycle in the system; (2) modified materials form chelates with iron ions and bond with iron ions to avoid Fe3+ precipitation. We further analyzed the effect of different modifying materials in improving these two mechanisms. Combining the advantages of different modified materials to develop iron-based materials with composite modification methods can enhance the catalytic performance of iron-based materials in AOPs for further application in wastewater treatment.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3