Prediction of Snowmelt Days Using Binary Logistic Regression in the Umbria-Marche Apennines (Central Italy)

Author:

Gentilucci MatteoORCID,Pambianchi Gilberto

Abstract

Snow cover in a mountain area is a physical parameter that induces quite rapid changes in the landscape, from a geomorphological point of view. In particular, snowmelt plays a crucial role in the assessment of avalanche risk, so it is essential to know the days when snowmelt is expected, in order to prepare operational alert levels. Moreover, melting of the snow cover has a direct effect on the recharge of the water table, as well as on the regulation of the vegetative cycle of mountain plants. Therefore, a study on snowmelt, its persistence on the ground, and the height of the snow cover in the Umbria-Marche Apennines in central Italy is of great interest, since this is an area that is extremely poorly sampled and analysed. This study was conducted on the basis of four mountain weather stations equipped with a recently installed sonar-based snow depth gauge, so that a relatively short period, 2010–2020, was evaluated. A trend analysis revealed non-significant decreases in snow cover height and snow persistence time, in contrast to the significant increasing trend of mean temperature, while parameters such as relative humidity and wind speed did not appear to have a dominant trend. Further analysis showed relationships between snowmelt and the climatic parameters considered, leading to the definition of a mathematical model developed using the binary logistic regression technique, and having a predictive power of 82.6% in the case of days with snowmelt on the ground. The aim of this study was to be a first step towards models aimed at preventing avalanche risk, hydrological risk, and plant species adaptation, as well as providing a more complete definition of the climate of the study area.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3