A Dynamic Multi-Scale Convolution Model for Face Recognition Using Event-Related Potentials

Author:

Li Shengkai12ORCID,Zhang Tonglin23,Yang Fangmei2,Li Xian14,Wang Ziyang2,Zhao Dongjie14

Affiliation:

1. School of Automation, Qingdao University, Qingdao 266071, China

2. State Key Laboratory of Multimodal Artifcial Intelligence Systems, The Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

3. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China

4. Shandong Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071, China

Abstract

With the development of data mining technology, the analysis of event-related potential (ERP) data has evolved from statistical analysis of time-domain features to data-driven techniques based on supervised and unsupervised learning. However, there are still many challenges in understanding the relationship between ERP components and the representation of familiar and unfamiliar faces. To address this, this paper proposes a model based on Dynamic Multi-Scale Convolution for group recognition of familiar and unfamiliar faces. This approach uses generated weight masks for cross-subject familiar/unfamiliar face recognition using a multi-scale model. The model employs a variable-length filter generator to dynamically determine the optimal filter length for time-series samples, thereby capturing features at different time scales. Comparative experiments are conducted to evaluate the model’s performance against SOTA models. The results demonstrate that our model achieves impressive outcomes, with a balanced accuracy rate of 93.20% and an F1 score of 88.54%, outperforming the methods used for comparison. The ERP data extracted from different time regions in the model can also provide data-driven technical support for research based on the representation of different ERP components.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3