Research on Corn Leaf and Stalk Recognition and Ranging Technology Based on LiDAR and Camera Fusion

Author:

Hu Xueting1,Zhang Xiao1,Chen Xi1,Zheng Lu1

Affiliation:

1. Mechanical Engineering Training Centre, College of Engineering, China Agricultural University, Beijing 100083, China

Abstract

Corn, as one of the three major grain crops in China, plays a crucial role in ensuring national food security through its yield and quality. With the advancement of agricultural intelligence, agricultural robot technology has gained significant attention. High-precision navigation is the basis for realizing various operations of agricultural robots in corn fields and is closely related to the quality of operations. Corn leaf and stalk recognition and ranging are the prerequisites for achieving high-precision navigation and have attracted much attention. This paper proposes a corn leaf and stalk recognition and ranging algorithm based on multi-sensor fusion. First, YOLOv8 is used to identify corn leaves and stalks. Considering the large differences in leaf morphology and the large changes in field illumination that lead to discontinuous identification, an equidistant expansion polygon algorithm is proposed to post-process the leaves, thereby increasing the average recognition completeness of the leaves to 86.4%. Secondly, after eliminating redundant point clouds, the IMU data are used to calculate the confidence of the LiDAR and depth camera ranging point clouds, and point cloud fusion is performed based on this to achieve high-precision ranging of corn leaves. The average ranging error is 2.9 cm, which is lower than the measurement error of a single sensor. Finally, the stalk point cloud is processed and clustered using the FILL-DBSCAN algorithm to identify and measure the distance of the same corn stalk. The algorithm combines recognition accuracy and ranging accuracy to meet the needs of robot navigation or phenotypic measurement in corn fields, ensuring the stable and efficient operation of the robot in the corn field.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3