Landscape, Soil, Lithology, Climate and Permafrost Control on Dissolved Carbon, Major and Trace Elements in the Ob River, Western Siberia

Author:

Kolesnichenko Iurii,Kolesnichenko Larisa G.,Vorobyev Sergey N.,Shirokova Liudmila S.,Semiletov Igor P.ORCID,Dudarev Oleg V.,Vorobev Rostislav S.ORCID,Shavrina Uliana,Kirpotin Sergey N.,Pokrovsky Oleg S.ORCID

Abstract

In order to foresee possible changes in the elementary composition of Arctic river waters, complex studies with extensive spatial coverage, including gradients in climate and landscape parameters, are needed. Here, we used the unique position of the Ob River, draining through the vast partially frozen peatlands of the western Siberia Lowland and encompassing a sizable gradient of climate, permafrost, vegetation, soils and Quaternary deposits, to assess a snap-shot (8–23 July 2016) concentration of all major and trace elements in the main stem (~3000 km transect from the Tom River confluence in the south to Salekhard in the north) and its 11 tributaries. During the studied period, corresponding to the end of the spring flood-summer baseflow, there was a systematic decrease, from the south to the north, of Dissolved Inorganic Carbon (DIC), Specific Conductivity, Ca and some labile trace elements (Mo, W and U). In contrast, Dissolved Organic Carbon (DOC), Fe, P, divalent metals (Mn, Ni, Cu, Co and Pb) and low mobile trace elements (Y, Nb, REEs, Ti, Zr, Hf and Th) sizably increased their concentration northward. The observed latitudinal pattern in element concentrations can be explained by progressive disconnection of groundwaters from the main river and its tributaries due to a northward increase in the permafrost coverage. A northward increase in bog versus forest coverage and an increase in DOC and Fe export enhanced the mobilization of insoluble, low mobile elements which were present in organo-ferric colloids (1 kDa—0.45 µm), as confirmed by an in-situ dialysis size fractionation procedure. The chemical composition of the sampled mainstream and tributaries demonstrated significant (p < 0.01) control of latitude of the sampling point; permafrost coverage; proportion of bogs, lakes and floodplain coverage and lacustrine and fluvio-glacial Quaternary deposits of the watershed. This impact was mostly pronounced on DOC, Fe, P, divalent metals (Mn, Co, Ni, Cu and Pb), Rb and low mobile lithogenic trace elements (Al, Ti, Cr, Y, Zr, Nb, REEs, Hf and Th). The pH and concentrations of soluble, highly mobile elements (DIC, SO4, Ca, Sr, Ba, Mo, Sb, W and U) positively correlated with the proportion of forest, loesses, eluvial, eolian, and fluvial Quaternary deposits on the watershed. Consistent with these correlations, a Principal Component Analysis demonstrated two main factors explaining the variability of major and trace element concentration in the Ob River main stem and tributaries. The DOC, Fe, divalent metals and trivalent and tetravalent trace elements were presumably controlled by a northward increase in permafrost, floodplain, bogs, lakes and lacustrine deposits on the watersheds. The DIC and labile alkaline-earth metals, oxyanions (Mo, Sb and W) and U were impacted by southward-dominating forest coverage, loesses and eluvial and fertile soils. Assuming that climate warming in the WSL will lead to a northward shift of the forest and permafrost boundaries, a “substituting space for time” approach predicts a future increase in the concentration of DIC and labile major and trace elements and a decrease of the transport of DOC and low soluble trace metals in the form of colloids in the main stem of the Ob River. Overall, seasonally-resolved transect studies of large riverine systems of western Siberia are needed to assess the hydrochemical response of this environmentally-important territory to on-going climate change.

Funder

Russian Fund fo Scientific Research

RSF

RFBR

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3