Deep Learning Equalizer Connected with Viterbi-Viterbi Algorithm for PAM D-Band Radio over Fiber Link

Author:

Xie Tangyao1,Sheng Qiang2,Yu Jianguo1

Affiliation:

1. Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Key Laboratory of Space Utilization, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China

Abstract

D-band (110–170 GHz) has been regarded as a potential candidate for the future 6G wireless network because of its large available bandwidth. At present, the lack of electrical amplifiers operating in the high frequency band and the strong nonlinear effect, i.e., the D-band, are still important problems. Therefore, effective methods to mitigate the nonlinear issue resulting from the ROF link are indispensable, among of which machine learning is considered the most effective paradigm to model the nonlinear behavior due to its nonlinear active function and structure. In order to reduce the computation amount and burden, a novel deep learning neural network equalizer connected with typical mathematical frequency offset estimation (FOE) and carrier phase recovery (CPR) algorithms is proposed. We implement D-band 45 Gbaud PAM-4 and 20 Gbaud PAM-8 ROF transmission simulations, and the simulation results show that the real value neural network (RVNN) equalizer connected with the Viterbi-Viterbi algorithm exhibits better compensation ability for nonlinear impairment, especially when dealing with serious inter-symbol interference and nonlinear effects. In our experiment, we employ coherent detection to further improve the receiver sensitivity, so a complex baseband signal after down conversion at the receiver is inherently produced. In this scenario, the complex value neural network (CVNN) and RVNN equalizer connected with the Viterbi-Viterbi algorithm have better BER performance with an error rate lower than the HD-FEC threshold of 3.8 × 10−3.

Funder

NNSF of the China

the Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3