Comparative Analysis of Machine Learning-Based Predictive Models for Fine Dead Fuel Moisture of Subtropical Forest in China

Author:

Hou Xiang123,Wu Zhiwei123,Zhu Shihao123,Li Zhengjie123,Li Shun123

Affiliation:

1. Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China

2. Key Laboratory of Natural Disaster Monitoring, Early Warning and Assessment of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China

3. School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China

Abstract

The moisture content of fine dead surface fuel in forests is a crucial metric for assessing its combustibility and plays a pivotal role in the early warning, occurrence, and spread of forest fires. Accurate prediction of the moisture content of fine dead fuel on the forest surface is a critical challenge in forest fire management. Previous research on fine surface fuel moisture content has been mainly focused on coniferous forests in cold temperate zones, but there has been less attention given to understanding the fuel moisture dynamics in subtropical forests, which limits the development of regional forest fire warning models. Here, we consider the coupled influence of multiple meteorological, terrain, forest stand, and other characteristic factors on the fine dead fuel moisture content within the subtropical evergreen broadleaved forest region of southern China. The ability of five machine learning algorithms to predict the moisture content of fine dead fuel on the forest surface is assessed, and the key factors affecting the model accuracy are identified. Results show that when a single meteorological factor is used as a forecasting model, its forecasting accuracy is less than that of the combined model with multiple characteristic factors. However, the prediction accuracy of the model is improved after the addition of forest stand factors and terrain factors. The model prediction ability is the best for the combination of all feature factors including meteorology, forest stand, and terrain. The overall prediction accuracy of the model is ordered as follows: random forest > extreme gradient boosting > support vector machine > stepwise linear regression > k-nearest neighbor. Canopy density in forest stand factors, slope position and altitude in terrain factors, and average relative air humidity and light intensity in the previous 15 days are the key meteorological factors affecting the prediction accuracy of fuel moisture content. Our results provide scientific guidance and support for understanding the variability of forest surface fuel moisture content and improved regional forest fire warnings.

Funder

the National Natural Science Foundation of China

the Jiangxi Provincial Department of Education Graduate Innovation Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3