Quantitative Study of Morphological Features of Stem Cells onto Photopatterned Azopolymer Films

Author:

Salvatore MarcellaORCID,Oscurato Stefano LuigiORCID,D’Albore Marietta,Guarino VincenzoORCID,Zeppetelli Stefania,Maddalena PasqualinoORCID,Ambrosio Antonio,Ambrosio Luigi

Abstract

In the last decade, the use of photolithography for the fabrication of structured substrates with controlled morphological patterns that are able to interact with cells at micrometric and nanometric size scales is strongly growing. A promising simple and versatile microfabrication method is based on the physical mass transport induced by visible light in photosensitive azobenzene-containing polymers (or azopolymers). Such light-driven material transport produces a modulation of the surface of the azopolymer film, whose geometry is controlled by the intensity and the polarization distributions of the irradiated light. Herein, two anisotropic structured azopolymer films have been used as substrates to evaluate the effects of topological signals on the in vitro response of human mesenchymal stem cells (hMSCs). The light-induced substrate patterns consist of parallel microgrooves, which are produced in a spatially confined or over large-scale areas of the samples, respectively. The analysis of confocal optical images of the in vitro hMSC cells grown on the patterned films offered relevant information about cell morphology—i.e., nuclei deformation and actin filaments elongation—in relation to the geometry and the spatial extent of the structured area of substrates. The results, together with the possibility of simple, versatile, and cost-effective light-induced structuration of azopolymers, promise the successful use of these materials as anisotropic platforms to study the cell guidance mechanisms governing in vitro tissue formation.

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3