Physicochemical, Mechanical, and Antimicrobial Properties of Novel Dental Polymers Containing Quaternary Ammonium and Trimethoxysilyl Functionalities

Author:

Bienek Diane R.,Giuseppetti Anthony A.,Frukhtbeyn Stanislav A.,Hiers Rochelle D.,Esteban Florez Fernando L.ORCID,Khajotia Sharukh S.ORCID,Skrtic Drago

Abstract

The aims of this study were to evaluate the physicochemical and mechanical properties, antimicrobial (AM) functionality, and cytotoxic potential of novel dental polymers containing quaternary ammonium and trimethoxysilyl functionalities (e.g., N-(2-(methacryloyloxy)ethyl)-N,N-dimethyl-3-(trimethoxysilyl)propan-1-aminium iodide (AMsil1) and N-(2-(methacryloyloxy)ethyl)-N,N-dimethyl-11-(trimethoxysilyl)undecan-1-aminium bromide (AMsil2)). AMsil1 or AMsil2 were incorporated into light-cured (camphorquinone + ethyl-4-N,N-dimethylamino benzoate) urethane dimethacrylate (UDMA)/polyethylene glycol-extended UDMA/ethyl 2-(hydroxymethyl)acrylate (EHMA) resins (hereafter, UPE resin) at 10 or 20 mass %. Cytotoxic potential was assessed by measuring viability and metabolic activity of immortalized mouse connective tissue and human gingival fibroblasts in direct contact with monomers. AMsil–UPE resins were evaluated for wettability by contact angle measurements and degree of vinyl conversion (DVC) by near infra-red spectroscopy analyses. Mechanical property evaluations entailed flexural strength (FS) and elastic modulus (E) testing of copolymer specimens. The AM properties were assessed using Streptococcus mutans (planktonic and biofilm forms) and Porphyromonas gingivalis biofilm. Neither AMsil exhibited significant toxicity in direct contact with cells at biologically relevant concentrations. Addition of AMsils made the UPE resin more hydrophilic. DVC values for the AMsil–UPE copolymers were 2–31% lower than that attained in the UPE resin control. The mechanical properties (FS and E) of AMsil–UPE specimens were reduced (11–57%) compared to the control. Compared to UPE resin, AMsil1–UPE and AMsil2–UPE (10% mass) copolymers reduced S. mutans biofilm 4.7- and 1.7-fold, respectively (p ≤ 0.005). Although not statistically different, P. gingivalis biofilm biomass on AMsil1–UPE and AM AMsil2–UPE copolymer disks were lower (71% and 85%, respectively) than that observed with a commercial AM dental material. In conclusion, the AM function of new monomers is not inundated by their toxicity towards cells. Despite the reduction in mechanical properties of the AMsil–UPE copolymers, AMsil2 is a good candidate for incorporation into multifunctional composites due to the favorable overall hydrophilicity of the resins and the satisfactory DVC values attained upon light polymerization of AMsil-containing UDMA/PEG-U/EHMA copolymers.

Funder

National Institute of Dental and Craniofacial Research

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3