Semantic VPS for Smartphone Localization in Challenging Urban Environments

Author:

Lee Max Jwo Lem,Hsu Li-TaORCID,Ng Hoi-FungORCID

Abstract

Accurate smartphone-based outdoor localization systems in deep urban canyons are increasingly needed for various IoT applications. As smart cities have developed, building information modeling (BIM) has become widely available. This article, for the first time, presents a semantic Visual Positioning System (VPS) for accurate and robust position estimation in urban canyons where the global navigation satellite system (GNSS) tends to fail. In the offline stage, a material segmented BIM is used to generate segmented images. In the online stage, an image is taken with a smartphone camera that provides textual information about the surrounding environment. The approach utilizes computer vision algorithms to segment between the different types of material class identified in the smartphone image. A semantic VPS method is then used to match the segmented generated images with the segmented smartphone image. Each generated image contains position information in terms of latitude, longitude, altitude, yaw, pitch, and roll. The candidate with the maximum likelihood is regarded as the precise position of the user. The positioning result achieved an accuracy of 2.0 m among high-rise buildings on a street, 5.5 m in a dense foliage environment, and 15.7 m in an alleyway. This represents an improvement in positioning of 45% compared to the current state-of-the-art method. The estimation of yaw achieved accuracy of 2.3°, an eight-fold improvement compared to the smartphone IMU.

Funder

Research Institute for Sustainable Urban Development, Hong Kong Polytechnic University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3