Real-Time Evaluation of Perception Uncertainty and Validity Verification of Autonomous Driving

Author:

Yang Mingliang1,Jiang Kun1,Wen Junze1,Peng Liang1,Yang Yanding1,Wang Hong1,Yang Mengmeng1,Jiao Xinyu1,Yang Diange1

Affiliation:

1. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China

Abstract

Deep neural network algorithms have achieved impressive performance in object detection. Real-time evaluation of perception uncertainty from deep neural network algorithms is indispensable for safe driving in autonomous vehicles. More research is required to determine how to assess the effectiveness and uncertainty of perception findings in real-time.This paper proposes a novel real-time evaluation method combining multi-source perception fusion and deep ensemble. The effectiveness of single-frame perception results is evaluated in real-time. Then, the spatial uncertainty of the detected objects and influencing factors are analyzed. Finally, the accuracy of spatial uncertainty is validated with the ground truth in the KITTI dataset. The research results show that the evaluation of perception effectiveness can reach 92% accuracy, and a positive correlation with the ground truth is found for both the uncertainty and the error. The spatial uncertainty is related to the distance and occlusion degree of detected objects.

Funder

National Natural Science Foundation of China

Beijing Municipal Science & Technology Commision

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3