A Multi-Channel Ensemble Method for Error-Related Potential Classification Using 2D EEG Images

Author:

Tao Tangfei12,Gao Yuxiang2,Jia Yaguang2,Chen Ruiquan2ORCID,Li Ping3,Xu Guanghua24

Affiliation:

1. Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi’an Jiaotong University, Xi’an 710049, China

2. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

3. School of Foreign Studies, Xi’an Jiaotong University, Xi’an 710049, China

4. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

An error-related potential (ErrP) occurs when people’s expectations are not consistent with the actual outcome. Accurately detecting ErrP when a human interacts with a BCI is the key to improving these BCI systems. In this paper, we propose a multi-channel method for error-related potential detection using a 2D convolutional neural network. Multiple channel classifiers are integrated to make final decisions. Specifically, every 1D EEG signal from the anterior cingulate cortex (ACC) is transformed into a 2D waveform image; then, a model named attention-based convolutional neural network (AT-CNN) is proposed to classify it. In addition, we propose a multi-channel ensemble approach to effectively integrate the decisions of each channel classifier. Our proposed ensemble approach can learn the nonlinear relationship between each channel and the label, which obtains 5.27% higher accuracy than the majority voting ensemble approach. We conduct a new experiment and validate our proposed method on a Monitoring Error-Related Potential dataset and our dataset. With the method proposed in this paper, the accuracy, sensitivity and specificity were 86.46%, 72.46% and 90.17%, respectively. The result shows that the AT-CNNs-2D proposed in this paper can effectively improve the accuracy of ErrP classification, and provides new ideas for the study of classification of ErrP brain–computer interfaces.

Funder

Key Research and Development Program of Shaanxi

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3