Effect of Chitosan on Rheological, Mechanical, and Adhesive Properties of Pectin–Calcium Gel

Author:

Popov Sergey1ORCID,Paderin Nikita1,Chistiakova Elizaveta1,Ptashkin Dmitry1,Vityazev Fedor1,Markov Pavel A.2ORCID,Erokhin Kirill S.3ORCID

Affiliation:

1. Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciencesk”, 167982 Syktyvkar, Russia

2. The Federal State Budgetary Institution “National Medical Research Center of Rehabilitation and Balneologyk”, 121099 Moscow, Russia

3. N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia

Abstract

In the present study, chitosan was included in the pectin ionotropic gel to improve its mechanical and bioadhesive properties. Pectin–chitosan gels P–Ch0, P–Ch1, P–Ch2, and P–Ch3 of chitosan weight fractions of 0.00, 0.25, 0.50, and 0.75 were prepared and characterized by dynamic rheological tests, penetration tests, and serosal adhesion ex vivo assays. The storage modulus (G′) and loss modulus (G″) values, gel hardness, and elasticity of P–Ch1 were significantly higher than those of P–Ch0 gel. However, a further increase in the content of chitosan in the gel significantly reduced these parameters. The inclusion of chitosan into the pectin gel led to a decrease in weight and an increase in hardness during incubation in Hanks’ solution at pH 5.0, 7.4, and 8.0. The adhesion of P–Ch1 and P–Ch2 to rat intestinal serosa ex vivo was 1.3 and 1.7 times stronger, whereas that of P–Ch3 was similar to that of a P–Ch0 gel. Pre-incubation in Hanks’ solution at pH 5.0 and 7.4 reduced the adhesivity of gels; however, the adhesivity of P–Ch1 and P–Ch2 exceeded that of P–Ch0 and P–Ch3. Thus, serosal adhesion combined with higher mechanical stability in a wide pH range appeared to be advantages of the inclusion of chitosan into pectin gel.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3