Protective Effect of Fucoxanthin on Zearalenone-Induced Hepatic Damage through Nrf2 Mediated by PI3K/AKT Signaling

Author:

Ben Ammar Rebai12ORCID,Zahra Hamad Abu1ORCID,Abu Zahra Abdulmalek Mohammad3ORCID,Alfwuaires Manal1,Abdulaziz Alamer Sarah1,Metwally Ashraf M.14,Althnaian Thnaian A.5ORCID,Al-Ramadan Saeed Y.5ORCID

Affiliation:

1. Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia

2. Center of Biotechnology of Borj-Cedria, Laboratory of Aromatic and Medicinal Plants, Technopole of Borj-Cedria, Hammam-Lif 2050, Tunisia

3. Medical Laboratory Sciences Department, Jordan University of Science and Technology, Irbid 22110, Jordan

4. Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

5. Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia

Abstract

Hepatotoxic contaminants such as zearalenone (ZEA) are widely present in foods. Marine algae have a wide range of potential applications in pharmaceuticals, cosmetics, and food products. Research is ongoing to develop treatments and products based on the compounds found in algae. Fucoxanthin (FXN) is a brown-algae-derived dietary compound that is reported to prevent hepatotoxicity caused by ZEA. This compound has multiple biological functions, including anti-diabetic, anti-obesity, anti-microbial, and anti-cancer properties. Furthermore, FXN is a powerful antioxidant. In this study, we examined the effects of FXN on ZEA-induced stress and inflammation in HepG2 cells. MTT assays, ROS generation assays, Western blots, and apoptosis analysis were used to evaluate the effects of FXN on ZEA-induced HepG2 cell inflammation. Pre-incubation with FXN reduced the cytotoxicity of ZEA toward HepG2 cells. FXN inhibited the ZEA-induced production of pro-inflammatory cytokines, including IL-1 β, IL-6, and TNF-α. Moreover, FXN increased HO-1 expression in HepG2 by activating the PI3K/AKT/NRF2 signaling pathway. In conclusion, FXN inhibits ZEA-induced inflammation and oxidative stress in hepatocytes by targeting Nrf2 via activating PI3K/AKT signaling.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3