Indoor Location Data for Tracking Human Behaviours: A Scoping Review

Author:

Shum Leia C.ORCID,Faieghi Reza,Borsook Terry,Faruk Tamim,Kassam Souraiya,Nabavi Hoda,Spasojevic Sofija,Tung James,Khan Shehroz S.,Iaboni Andrea

Abstract

Real-time location systems (RTLS) record locations of individuals over time and are valuable sources of spatiotemporal data that can be used to understand patterns of human behaviour. Location data are used in a wide breadth of applications, from locating individuals to contact tracing or monitoring health markers. To support the use of RTLS in many applications, the varied ways location data can describe patterns of human behaviour should be examined. The objective of this review is to investigate behaviours described using indoor location data, and particularly the types of features extracted from RTLS data to describe behaviours. Four major applications were identified: health status monitoring, consumer behaviours, developmental behaviour, and workplace safety/efficiency. RTLS data features used to analyse behaviours were categorized into four groups: dwell time, activity level, trajectory, and proximity. Passive sensors that provide non-uniform data streams and features with lower complexity were common. Few studies analysed social behaviours between more than one individual at once. Less than half the health status monitoring studies examined clinical validity against gold-standard measures. Overall, spatiotemporal data from RTLS technologies are useful to identify behaviour patterns, provided there is sufficient richness in location data, the behaviour of interest is well-characterized, and a detailed feature analysis is undertaken.

Funder

AGE-WELL NCE

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A toolkit for localisation queries;Pervasive and Mobile Computing;2024-10

2. Spatiotemporal modeling of occupational particulate matter using personal low-cost sensor and indoor location tracking data;Journal of Occupational and Environmental Hygiene;2024-08-29

3. Beyond the physical: Digital phenotyping and the complexity of surgical recovery;Surgery;2024-08

4. Indoor Area Location System Using UWB Technology and Axis-Linear Bounding Boxes;2024 IEEE Congress on Evolutionary Computation (CEC);2024-06-30

5. On TinyML WiFi Fingerprinting-Based Indoor Localization: Comparing RSSI vs. CSI Utilization;2024 IEEE 21st Consumer Communications & Networking Conference (CCNC);2024-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3