Continuous Sizing and Identification of Microplastics in Water

Author:

Glöckler FelixORCID,Foschum Florian,Kienle Alwin

Abstract

The pollution of the environment with microplastics in general, and in particular, the contamination of our drinking water and other food items, has increasingly become the focus of public attention in recent years. In order to better understand the entry pathways into the human food chain and thus prevent them if possible, a precise characterization of the particles concerning their size and material is indispensable. Particularly small plastic particles pose a special challenge since their material can only be determined by means of large experimental effort. In this work, we present a proof of principle experiment that allows the precise determination of the plastic type and the particle size in a single step. The experiment combines elastic light scattering (Mie scattering) with inelastic light scattering (Raman scattering), the latter being used to determine the plastic type. We conducted Monte Carlo simluations for the elastically scattered light for different kinds of plastics in a microfluidic cuvette which we could reproduce in the experiment. We were able to measure the Raman signals for different microplastics in the same measurement as the elastically scattered light and thereby determine their material. This information was used to select the appropriate Monte Carlo simulation data and to assign the correct particle size to different materials with only one calibration measurement.

Funder

Arbeitsgemeinschaft industrielle Forschung

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

1. Plastic pollution and potential solutions;Rhodes;Sci. Prog.,2018

2. Ritchie, H., and Roser, M. (2018). Plastic pollution. Our World Data, Available online: https://ourworldindata.org/plastic-pollution.

3. Plastic pollution of the world’s seas and oceans as a contemporary challenge in ocean governance;Haward;Nat. Commun.,2018

4. Plastic pollution in the marine environment;Thushari;Heliyon,2020

5. Threat of plastic pollution to seabirds is global, pervasive, and increasing;Wilcox;Proc. Natl. Acad. Sci. USA,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3