Mixed Metal Oxide Systems Applied to Thermochemical Storage of Solar Energy: Benefits of Secondary Metal Addition in Co and Mn Oxides and Contribution of Thermodynamics

Author:

André Laurie,Abanades Stéphane,Cassayre LaurentORCID

Abstract

Thermochemical energy storage is promising for the long-term storage of solar energy via chemical bonds using reversible redox reactions. The development of thermally-stable and redox-active materials is needed, as single metal oxides (mainly Co and Mn oxides) show important shortcomings that may delay their large-scale implementation in solar power plants. Drawbacks associated with Co oxide concern chiefly cost and toxicity issues while Mn oxide suffers from slow oxidation kinetics and poor reversibility. Mixed metal oxide systems could alleviate the above-mentioned issues, thereby achieving improved materials characteristics. All binary oxide mixtures of the Mn-Co-Fe-Cu-O system are considered in this study, and their properties are evaluated by experimental measurements and/or thermodynamic calculations. The addition of Fe, Cu or Mn to cobalt oxide decreased both the oxygen storage capacity and energy storage density, thus adversely affecting the performance of Co3O4/CoO. Conversely, the addition of Fe, Co or Cu (with added amounts above 15, 40 and 30 mol%, respectively) improved the reversibility, re-oxidation rate and energy storage capacity of manganese oxide. Computational thermodynamics was applied to unravel the governing mechanisms and phase transitions responsible for the materials behavior, which represents a powerful tool for predicting the suitability of mixed oxide systems applied to thermochemical energy storage.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3