Impregnation of Wood with Microencapsulated Bio-Based Phase Change Materials for High Thermal Mass Engineered Wood Flooring

Author:

Mathis Damien,Blanchet Pierre,Landry VéronicORCID,Lagière Philippe

Abstract

Wood is a porous material that can be impregnated and have enhanced properties. Two species of hardwood, red oak (Quercus rubra L.) and sugar maple (Acer saccharum Marsh.), were impregnated in a reactor with a microencapsulated phase change material. The objective was to enhance the thermal mass of wood boards used as surface layers for engineered wood flooring manufacturing. Preliminary experiments were conducted on small samples in order to define suitable impregnation parameters, based on the Bethell cycle. Thin wood boards were impregnated with a microencapsulated phase change material dispersed into distilled water. Several cycles of pressure were applied. Heating storage of the impregnated wood boards was determined using a dynamic heat flow meter apparatus method. A latent heat storage of 7.6 J/g over 3 °C was measured for impregnated red oak samples. This corresponds to a heat storage enhancement of 77.0%. Sugar maple was found to be harder to impregnate and thus his thermal enhancement was lower. Impregnated samples were observed by reflective optical microscopy. Microcapsules were found mainly in the large vessels of red oak, forming aggregates. Pull-off tests were conducted on varnished samples to assess the influence of an impregnation on varnish adhesion and no significant influence was revealed. Engineered wood flooring manufactured with impregnated boards such as characterized in this study could store solar energy and thus improve buildings energy efficiency. Although wood is a material with a low-conductivity, the thermal exchange between the PCM and the building air could be good enough as the microcapsules are positioned in the surface layer. Furthermore, flooring is an area with frequent sunrays exposure. Such high thermal mass EWF could lead to energy savings and to an enhancement of occupant’s thermal comfort. This study aimed to characterize the potential of impregnation with MPCM of two wood species in order to make high thermal mass EWF.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. A brief review of the past, present and future of wood preservation

2. Processing bulk natural wood into a high-performance structural material

3. Wood Handbook Wood as an Engineering Material,2010

4. Thermal storage in drywall using organic phase-change material;Shapiro;Passive Sol. J.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3