Abstract
The rapid transition towards an inverter-dominated power system has reduced the inertial response capability of modern power systems. As a solution, inverters are equipped with control strategies, which can emulate inertia by exchanging power with the grid based on frequency changes. This paper discusses the various current control techniques for application in these systems, known as virtual inertia systems. Some classic control techniques like the proportional-integral, the proportional-resonant, and the hysteresis control are presented first, followed by the design and discussion of two more advanced control techniques based on model prediction and machine learning, respectively. MATLAB/Simulink-based simulations are performed, and results are presented to compare these control techniques in terms of harmonic performance, switching frequency, and transient response.
Funder
South Dakota Board of Regents
National Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献