Differences among Unique Nanoparticle Protein Corona Constructs: A Case Study Using Data Analytics and Multi-Variant Visualization to Describe Physicochemical Characteristics

Author:

Stewart Madison,Mulenos Marina,Steele London,Sayes Christie

Abstract

Gold nanoparticles (AuNPs) used in pharmaceutical treatments have been shown to effectively deliver a payload, such as an active pharmaceutical ingredient or image contrast agent, to targeted tissues in need of therapy or diagnostics while minimizing exposure, availability, and accumulation to surrounding biological compartments. Data sets collected in this field of study include some toxico- and pharmacodynamic properties (e.g., distribution and metabolism) but many studies lack information about adsorption of biological molecules or absorption into cells. When nanoparticles are suspended in blood serum, a protein corona cloud forms around its surface. The extent of the applications and implications of this formed cloud are unknown. Some researchers have speculated that the successful use of nanoparticles in pharmaceutical treatments relies on a comprehensive understanding of the protein corona composition. The work presented in this paper uses a suite of data analytics and multi-variant visualization techniques to elucidate particle-to-protein interactions at the molecular level. Through mass spectrometry analyses, corona proteins were identified through large and complex datasets. With such high-output analyses, complex datasets pose a challenge when visualizing and communicating nanoparticle-protein interactions. Thus, the creation of a streamlined visualization method is necessary. A series of user-friendly data informatics techniques were used to demonstrate the data flow of protein corona characteristics. Multi-variant heat maps, pie charts, tables, and three-dimensional regression analyses were used to improve results interpretation, facilitate an iterative data transfer process, and emphasize features of the nanoparticle-protein corona system that might be controllable. Data informatics successfully highlights the differences between protein corona compositions and how they relate to nanoparticle surface charge.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3