The Associations between Evacuation Movements and Children’s Physiological Demands Analyzed via Wearable-Based Sensors

Author:

Zhang Bo,Gao Xiaoyu,Zhou JiaxuORCID,Jia Xiaohu

Abstract

During fire evacuations, crawling is recommended to prevent harm from toxic smoke and to access more breathable air. Few studies have evaluated the physiological burden of crawling, especially for children. The method of using wearable sensors to collect data (e.g., electrodermal activity, EDA; skin temperature, SKT) was used to evaluate the effects of different locomotive postures on children’s velocity and physiological demands. Twenty-eight (28) children (13 boys and 15 girls), aged 4 to 6 years old, traveled up to 22.0 m in different postures: Upright walking (UW), stoop walking (SW), knee and hand crawling (KHC). The results showed that: (1) Gender and age had significant impacts on children’s velocity (p < 0.05): Boys were always faster than girls in any of the three postures and the older the child, the faster the velocity for KHC. (2) Physiological results demonstrated that KHC was more physically demanding than bipedal walking, represented by higher scores of the EDA and SKT indicators, similar to the findings of adults. (3) Gender and age had significant impacts on children’s physiological demands (p < 0.05). The physiological demands were greater for boys than girls. In addition, the higher the age, the less physiological demands he/she needs. Overall, the findings suggest that children are unnecessarily required to choose crawling precisely as adults as the best posture to respond to emergency scenarios. In a severe fire, stoop walking is suggested, as there is more respired air and children could move quickly and avoid overworking physiological burdens. The results of this study are expected to be considered in the evaluation of current evacuation recommendations and for the safety guide of preparedness to improve the effectiveness of risk reduction for children.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3