FPGA Implementation of Efficient CFAR Algorithm for Radar Systems

Author:

Sim YunseongORCID,Heo JinmooORCID,Jung YongchulORCID,Lee SeongjooORCID,Jung YunhoORCID

Abstract

The constant false-alarm rate (CFAR) algorithm is essential for detecting targets during radar signal processing. It has been improved to accurately detect targets, especially in nonhomogeneous environments, such as multitarget or clutter edge environments. For example, there are sort-based and variable index-based algorithms. However, these algorithms require large amounts of computation, making them difficult to apply in radar applications that require real-time target detection. We propose a new CFAR algorithm that determines the environment of a received signal through a new decision criterion and applies the optimal CFAR algorithms such as the modified variable index (MVI) and automatic censored cell averaging-based ordered data variability (ACCA-ODV). The Monte Carlo simulation results of the proposed CFAR algorithm showed a high detection probability of 93.8% in homogeneous and nonhomogeneous environments based on an SNR of 25 dB. In addition, this paper presents the hardware design, field-programmable gate array (FPGA)-based implementation, and verification results for the practical application of the proposed algorithm. We reduced the hardware complexity by time-sharing sum and square operations and by replacing division operations with multiplication operations when calculating decision parameters. We also developed a low-complexity and high-speed sorter architecture that performs sorting for the partial data in leading and lagging windows. As a result, the implementation used 8260 LUTs and 3823 registers and took 0.6 μs to operate. Compared with the previously proposed FPGA implementation results, it is confirmed that the complexity and operation speed of the proposed CFAR processor are very suitable for real-time implementation.

Funder

Institute for Information and Communications Technology Promotion

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3