A Wide Energy Range and 4π-View Gamma Camera with Interspaced Position-Sensitive Scintillator Array and Embedded Heavy Metal Bars

Author:

Hu Yifan,Lyu Zhenlei,Fan Peng,Xu Tianpeng,Wang Shi,Liu Yaqiang,Ma TianyuORCID

Abstract

(1) Background: Gamma cameras have wide applications in industry, including nuclear power plant monitoring, emergency response, and homeland security. The desirable properties of a gamma camera include small weight, good resolution, large field of view (FOV), and wide imageable source energy range. Compton cameras can have a 4π FOV but have limited sensitivity at low energy. Coded-aperture gamma cameras are operatable at a wide photon energy range but typically have a limited FOV and increased weight due to the thick heavy metal collimators and shielding. In our lab, we previously proposed a 4π-view gamma imaging approach with a 3D position-sensitive detector, with which each detector element acts as the collimator for other detector elements. We presented promising imaging performance for 99mTc, 18F, and 137Cs sources. However, the imaging performance for middle- and high-energy sources requires further improvement. (2) Methods: In this study, we present a new gamma camera design to achieve satisfactory imaging performance in a wide gamma energy range. The proposed gamma camera consists of interspaced bar-shaped GAGG (Ce) crystals and tungsten absorbers. The metal bars enhance collimation for high-energy gamma photons without sacrificing the FOV. We assembled a gamma camera prototype and conducted experiments to evaluate the gamma camera’s performance for imaging 57Co, 137Cs, and 60Co point sources. (3) Results: Results show that the proposed gamma camera achieves a positioning accuracy of <3° for all gamma energies. It can clearly resolve two 137Cs point sources with 10° separation, two 57Co and two 60Co point sources with 20° separation, as well as a 2 × 3 137Cs point-source array with 20° separation. (4) Conclusions: We conclude that the proposed gamma camera design has comprehensive merits, including portability, 4π-view FOV, and good angular resolution across a wide energy range. The presented approach has promising potential in nuclear security applications.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

Tsinghua University Initiative Scientific Research Program

Tsinghua Precision Medicine Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CdZnTe semiconductor-based dual imager combining collimatorless and Compton imaging: Monte Carlo simulation;Nuclear Engineering and Technology;2024-10

2. Tetris-inspired detector with neural network for radiation mapping;Nature Communications;2024-04-09

3. High performance neutron passive imaging with a self-collimating neutron camera;2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD);2023-11-04

4. Development and evaluation of a compact gamma camera for radiation monitoring;Nuclear Engineering and Technology;2023-08

5. High-sensitivity cardiac SPECT system design with collimator-less interspaced mosaic-patterned scintillators;Frontiers in Medicine;2023-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3